2017-2018 Catalog

MATH 186 Network Models

This course treats network and graphical models arising especially in biological and cognitive sciences. Methods include networks, graphs, and matrices; probability, conditional probability, and Markov chains; discrete-time dynamics and recurrent neural networks; Bayesian statistical inference on graphical models; and optimization on graphs, including dynamic programming. In the computing laboratory component (a separately-scheduled 1.5 hour session), students will learn to use MATLAB to build and analyze models. Students will complete projects in each major area of the course. Calculus is not a pre-requisite. While open to all students this course is intended as an alternative to calculus as a first course in college-level mathematics.


4 units

Core Requirements Met

  • Mathematics/Science